Edexcel Maths FP3

Topic Questions from Papers

Matrices

3.

$$\mathbf{M} = \begin{pmatrix} 6 & 1 & -1 \\ 0 & 7 & 0 \\ 3 & -1 & 2 \end{pmatrix}$$

(a) Show that 7 is an eigenvalue of the matrix \mathbf{M} and find the other two eigenvalues of M.

(5)

(1-)	T21 1	-:		41	1	7
(D)	ring an	eigenvector	corresponding t	to the	eigenvait	ie /.

(4)

Question 3 continued	blan

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & 1 \\ k & 0 & 1 \end{pmatrix}, \text{ where } k \text{ is a constant.}$$

Given that $\begin{pmatrix} 6 \\ 1 \\ 6 \end{pmatrix}$ is an eigenvector of **M**,

- (a) find the eigenvalue of **M** corresponding to $\begin{pmatrix} 6 \\ 1 \\ 6 \end{pmatrix}$, (2)
- (b) show that k = 3,

(2)

(c) show that M has exactly two eigenvalues.

(4)

A transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by **M**.

The transformation T maps the line l_1 , with cartesian equations $\frac{x-2}{1} = \frac{y}{-3} = \frac{z+1}{4}$, onto the line l_2 .

(d) Taking k = 3, find cartesian equations of l_2 .

(5)

16

	Leave
Question 6 continued	

7. The matrix \mathbf{M} is given by

$$\mathbf{M} = \begin{pmatrix} k & -1 & 1 \\ 1 & 0 & -1 \\ 3 & -2 & 1 \end{pmatrix}, \quad k \neq 1$$

(a) Show that det $\mathbf{M} = 2 - 2k$.

(2)

(b) Find \mathbf{M}^{-1} , in terms of k.

(5)

The straight line l_1 is mapped onto the straight line l_2 by the transformation represented

by the matrix
$$\begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & -1 \\ 3 & -2 & 1 \end{pmatrix}$$
.

The equation of l_2 is $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$, where $\mathbf{a} = 4\mathbf{i} + \mathbf{j} + 7\mathbf{k}$ and $\mathbf{b} = 4\mathbf{i} + \mathbf{j} + 3\mathbf{k}$.

(c) Find a vector equation for the line l_1 .

(5)

20

Question 7 continued	blank
Question / continued	

8. The matrix \mathbf{M} is given by

$$\mathbf{M} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{pmatrix}$$

(a) Show that 4 is an eigenvalue of **M**, and find the other two eigenvalues.

(5)

(b) For the eigenvalue 4, find a corresponding eigenvector.

(3)

The straight line l_1 is mapped onto the straight line l_2 by the transformation represented by the matrix \mathbf{M} .

The equation of l_1 is $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$, where $\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$.

(c) Find a vector equation for the line l_2 .

(5)

Question 8 continued		Leave blank
		Q8
	al 13 marks)	
TOTAL FOR PAPERS	75 MARKS	
END		

4. The plane Π_1 has vector equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix},$$

where *s* and *t* are real parameters.

The plane Π_1 is transformed to the plane Π_2 by the transformation represented by the matrix \mathbf{T} , where

$$\mathbf{T} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

Find an equation of the plane Π_2 in the form $\mathbf{r} \cdot \mathbf{n} = p$

(9)

estion 4 continued		
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.
		.

6. It is given that $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ is an eigenvector of the matrix **A**, where

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 3 \\ 2 & b & 0 \\ a & 1 & 8 \end{pmatrix}$$

and a and b are constants.

(a) Find the eigenvalue of **A** corresponding to the eigenvector $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.

(3)

(b) Find the values of a and b.

(3)

(c) Find the other eigenvalues of A.

(5)

uestion 6 continued		

5. The matrix \mathbf{M} is given by

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix}, \text{ where } a, b \text{ and } c \text{ are constants.}$$

(a) Given that $\mathbf{j} + \mathbf{k}$ and $\mathbf{i} - \mathbf{k}$ are two of the eigenvectors of \mathbf{M} ,

find

- (i) the values of a, b and c,
- (ii) the eigenvalues which correspond to the two given eigenvectors.

(8)

(b) The matrix **P** is given by

$$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & d \\ -1 & 0 & 1 \end{pmatrix}, \text{ where } d \text{ is constant, } d \neq -1$$

Find

- (i) the determinant of \mathbf{P} in terms of d,
- (ii) the matrix P^{-1} in terms of d.

(5)

estion 5 continued	

Further Pure Mathematics FP3

Candidates sitting FP3 may also require those formulae listed under Further Pure Mathematics FP1, and Core Mathematics C1–C4.

Vectors

The resolved part of \mathbf{a} in the direction of \mathbf{b} is $\frac{\mathbf{a.b}}{|\mathbf{b}|}$

The point dividing AB in the ratio $\lambda : \mu$ is $\frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$

Vector product:
$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

$$\mathbf{a.(b\times c)} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \mathbf{b.(c\times a)} = \mathbf{c.(a\times b)}$$

If A is the point with position vector $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and the direction vector \mathbf{b} is given by $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, then the straight line through A with direction vector \mathbf{b} has cartesian equation

$$\frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} (= \lambda)$$

The plane through A with normal vector $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$ has cartesian equation

$$n_1 x + n_2 y + n_3 z + d = 0$$
 where $d = -a.n$

The plane through non-collinear points A, B and C has vector equation

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{c} - \mathbf{a}) = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}$$

The plane through the point with position vector **a** and parallel to **b** and **c** has equation $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$

The perpendicular distance of
$$(\alpha, \beta, \gamma)$$
 from $n_1x + n_2y + n_3z + d = 0$ is $\frac{\left|n_1\alpha + n_2\beta + n_3\gamma + d\right|}{\sqrt{n_1^2 + n_2^2 + n_3^2}}$.

Hyperbolic functions

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$\operatorname{arcosh} x = \ln\left\{x + \sqrt{x^{2} - 1}\right\} \quad (x \ge 1)$$

$$\operatorname{arsinh} x = \ln\left\{x + \sqrt{x^{2} + 1}\right\}$$

$$\operatorname{artanh} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right) \quad (|x| < 1)$$

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Parametric Form	$(a\cos\theta,b\sin\theta)$	$(at^2, 2at)$	$(a \sec \theta, b \tan \theta)$ $(\pm a \cosh \theta, b \sinh \theta)$	$\left(ct, \frac{c}{t}\right)$
Eccentricity	$e < 1$ $b^2 = a^2(1 - e^2)$	e=1	$e > 1$ $b^2 = a^2(e^2 - 1)$	$e = \sqrt{2}$
Foci	(±ae, 0)	(a, 0)	(±ae, 0)	$(\pm\sqrt{2}c,\pm\sqrt{2}c)$
Directrices	$x = \pm \frac{a}{e}$	x = -a	$x = \pm \frac{a}{e}$	$x + y = \pm \sqrt{2}c$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

Differentiation

$$f(x) f'(x)$$

$$\operatorname{arcsin} x \frac{1}{\sqrt{1-x^2}}$$

$$\operatorname{arccos} x -\frac{1}{\sqrt{1-x^2}}$$

$$\operatorname{arctan} x \frac{1}{1+x^2}$$

$$\operatorname{sinh} x \operatorname{cosh} x$$

$$\operatorname{cosh} x \sinh x$$

$$\operatorname{tanh} x \operatorname{sech}^2 x$$

$$\operatorname{arsinh} x \frac{1}{\sqrt{1+x^2}}$$

$$\operatorname{arcosh} x \frac{1}{\sqrt{x^2-1}}$$

$$\operatorname{artanh} x \frac{1}{1+x^2}$$

Integration (+ constant; a > 0 where relevant)

Arc length

$$s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 (cartesian coordinates)

$$s = \int \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \,\mathrm{d}t \quad \text{(parametric form)}$$

Surface area of revolution

$$S_x = 2\pi \int y \, ds = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$
$$= 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{n=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	(at ² , 2at)	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about $O: \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Candidates sitting C4 may also require those formulae listed under Core Mathematics C1, C2 and C3.

Integration (+ constant)

$$f(x) \qquad \int f(x) dx$$

$$\sec^2 kx \qquad \frac{1}{k} \tan kx$$

$$\tan x \qquad \ln|\sec x|$$

$$\cot x \qquad \ln|\sin x|$$

$$\csc x \qquad -\ln|\csc x + \cot x|, \quad \ln|\tan(\frac{1}{2}x)|$$

$$\sec x \qquad \ln|\sec x + \tan x|, \quad \ln|\tan(\frac{1}{2}x + \frac{1}{4}\pi)|$$

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$\mathbf{e}^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx k sec² kx
sec x sec x tan x
cot x -cosec² x
cosec x -cosec x cot x

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{r} a^{n-r} b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$

$$\text{where } \binom{n}{r} = {}^{n} \mathbf{C}_{r} = \frac{n!}{r! (n-r)!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1) \dots (n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_a^b y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$